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Metastabilities in the degenerated phase of the two-component model

Katarzyna Sznajd-Weron™
Institute of Theoretical Physics, University of Wroctaw, pl. Maxa Borna 9, 50-204 Wroctaw, Poland
(Received 22 March 2005; published 8 August 2005)

In previous papers, we have introduced a new dynamical model of Ising spins, namely the two-component
(TC) model. Using the Boltzmann factor, in this paper we introduce parameter 7 to the model. This is the
standard method for introducing temperature. However, since we have not defined the energy for the TC
model, but only the disagreement function, we will not call this parameter temperature. We will investigate the
system in its degenerated phase, which consists of four qualitatively different steady states at 7=0. We will
show that for 7>0, three of these steady states become metastable, and that above T=T" they become
unstable. In the range 0 <<T<<T", the evolution of the system consists of relatively long stagnation periods,
where the system remains in one of the metastable states, and rapid transition periods, where the system goes
from one metastable state to another. In this range, the distribution function of waiting times needed to reach
one of the states (steady for 7=0) has an exponential tail with a 7-dependent exponent.

DOI: 10.1103/PhysRevE.72.026109

I. INTRODUCTION

Controlling the transitions from metastable states to equi-
librium in the stochastic dynamics of lattice spin systems at
low temperatures has been and still is a subject of consider-
able interest in statistical mechanics [1-10]. The concepts of
metastability date back to the early days of thermodynamics
and recently have been recalled using the language of the
Landau theory for a ferromagnet by Godréche and Luck [8].
Within the mean-field approach at fixed temperature 7<T7,,
there are three types of steady states: stable (global minimum
of the free energy), metastable (local minimum of the free
energy), and unstable (maximum of the free energy). It was
realized in the 1960s that metastability is an artefact of the
mean-field approximation [8]. From the 1970s on, a variety
of complex systems have been shown to possess many meta-
stable states at low enough temperature, and metastable
states have thus been rediscovered under various names and
with various definitions. The first rigorous approach traces
back to [11], where metastability is characterized as a slow
evolution of the averages over the process towards the stable
equilibrium value. Recently, it has been found that even the
simple Ising ferromagnet has a large number of metastable
states with respect to Glauber spin-flip dynamics [9,10].
Therefore, at zero temperature the system could get stuck
forever in one of these states. There appears to be a nonzero
probability that the square lattice system freezes into a stripe
configuration. At 7=0, metastable states in this dynamics
have an infinite lifetime that can prevent the equilibrium
ground state from being reached. This is the basic reason
why the dynamics at 7=0 is different from that of small
positive temperature [9,10]. For T— 0, a system that enters a
metastable state can escape and the true equilibrium state is
eventually reached. The zero-temperature dynamics of
simple models such as Ising ferromagnets provides an alter-
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native to the mean-field situation, interesting examples of
dynamical systems which lead to zero-temperature metasta-
bility. Recently, extensive results were obtained in one [6]
and two dimensions (the square and honeycomb lattices) [2].

The single-spin-flip zero-temperature Glauber dynamics
is a descent dynamics (i.e., every move strictly decreases the
total energy). Recently, a new nondescent single-spin-flip dy-
namics has been introduced in the so called two-component
(TC) model [12,13]. In this model, instead of the energy, the
disagreement function has been introduced. In the TC model,
every move decreases the local disagreement function, but
can increase the global one [13]. Monte Carlo simulations
and analytical reasoning have shown that on the square lat-
tice (two-dimensional system), the TC model depending on
two coefficients (J;,J,) can eventually lead the system to
one of four phases: A (in which four qualitatively different
steady states exist), B (ferromagnetic), C (with two different
steady states), and D (antiferromagnetic). In one dimension,
degeneration of steady states is lower—it disappears in phase
C and there is double degeneration in phase A. Interestingly,
in the TC model a degeneration of the steady state has been
possible even if both coupling constants have been greater or
smaller than zero, i.e., J,/J,;>0, while in the ANNNI (axial
next-nearest-neighbor Ising) [14] model, coupling constants
need to have opposite signs in order to obtain degeneration,
i.e., J2/J1 <O0.

In this paper, we concentrate on the most interesting, de-
generated phase A of the TC model. We introduce parameter
T to the model and show that for 7> 0, three of four steady
states are metastable and only one (ferromagnetic) is stable.
We show that metastable states in this dynamics have an
infinite lifetime for 7=0, while for small 7> 0 a system that
enters a metastable state can escape from this state and the
stable ferromagnetic state is eventually reached. Using
Monte Carlo simulations we find the value of T=T", below
which the system enters metastable states and above which it
immediately goes to the stable steady state. We show that for
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1539-3755/2005/72(2)/026109(6)/$23.00 026109-1 ©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.026109

KATARZYNA SZNAJD-WERON

another metastable state, eventually reaching the final stable
steady state. In contrast to the Ising system under Glauber
dynamics, the system described by the TC model has only a
finite number of metastable states with four qualitatively dif-
ferent structures. In the next section, we briefly recall the
idea of the TC model, show all possible types of steady states
in degenerated phase A, and introduce parameter 7' to the
model.

II. THE TC MODEL

The TC model [12,13] has been proposed to generalize
the Sznajd model (for a review, see [15]), which was aimed
at describing global social phenomena (sociology) by local
social interactions (described by social psychology). The cru-
cial difference of the Sznajd model compared to other Ising-
type models is that information flows outward.

Because of the importance of this feature, we have de-
cided to introduce a generalized model which kept our old
dynamics (the outflow of information) but introduced a func-
tion controlling whether a spin should be flipped or not. The
resulting model consists of the following two components
(hence the name TC model) [12].

Dynamics: The information flows outward, i.e., a pair of
spins S; and S;,; is chosen to change their nearest neighbors.

Disagreement function: The change of spins is controlled
by a certain function (based on the ANNNI Hamiltonian
[14]), which is locally minimized.

In one dimension [12], simulations and analytical reason-
ing show that the TC model depending on two interaction
coefficients can eventually lead the system to one of four
phases: (A) degenerated, in which two qualitatively different
steady states exist—a ferromagnetic steady state is equally
probable with an antiferromagnetic steady state, (B) ferro-
magnetic, (C) antiphase (2,2), and (D) antiferromagnetic.

In two dimensions [13], the TC model can also eventually
lead the system to one of four phases: (A) degenerated, in
which four (instead of two) qualitatively different steady
states exist, (B) ferromagnetic, (C) doubly degenerated (in-
stead of no degeneration), and (D) antiferromagnetic.

In this paper, we deal with the two-dimensional version of
the TC model [13]. We investigate a system of Ising spins on
a square lattice L X L. The one-dimensional rule is applied to
each of the four chains of four spins each, centered about two
horizontal and two vertical pairs of light balls in Fig. 1. The
algorithm is the following.

(i) Choose at random a spin, e.g., S;
2 X2 box of spins (S
Fig. 1.

(ii) Calculate the disagreement function for each of the
eight nearest neighbors of the box defined in point 1 (chess-
board colored balls in Fig. 1), e.g., for Sic1 o

= JoSi1Sis1- (1)

J which defines a

ij Sije1>Si1 j» Siat jo1)—light balls in

Ei—l,j= _JISi—l,jSi,j

(iii) Calculate the disagreement function for each of the
eight nearest neighbors of the box in the case of a flipped
spin, e.g., for S;_j ,

Ei,—l,j:‘llsi Si i+ IS0 ;S0 - (2)

-1,
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FIG. 1. Transformation of the one-dimensional TC model to two
dimensions. The one-dimensional rule is applied to each of the four
chains of the 2 X2 box (light balls).
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(iv) For each of the eight spins, check the difference in the
disagreement function, e.g., for S;_; ;: AE,-_Lj=Ei'_Lj—Ei_1’j.
If it is smaller than zero then flip the spin (e.g., S, ;), oth-
erwise leave it unchanged.

Summarizing, in the original two-dimensional TC model

the spin S; ; is flipped with probability

pi,j: 1if AEi,j < O,

pij=0 otherwise. (3)

For such a model, we have shown [13] that in the case of
|J,] <J,, four qualitatively different steady states are possible
(see Fig. 2). It has been shown that even if we always start
from exactly the same random initial state, we can reach
each of the possible steady states presented in Fig. 2. One
could guess that the probability of reaching a certain steady
state depends on the disagreement function of the state, be-
cause the disagreement function plays the role of energy in
the TC model. In a previous paper [13] we have defined the
global disagreement function as

E=—(14%) EP=1— E°=—« Bk
FIG. 2. All possible steady states with their values of the global
disagreement function E (where k=J,/J;) for the two-dimensional

TC model in the case of |J,|<J,.
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TABLE I. The global disagreement function and probabilities of
reaching a given steady state for 7=0 obtained by a simple counting
of the possible equivalent configurations. Results agree with those
obtained from Monte Carlo simulations [13].

Type E E(k=2) Probability
(a) —(1+x) -3 1/8
(b) -k -1 1/8
(c) -K -2 1/4
(d) —K -2 1/2
E=~SE (4)
= N i’j i,j’

where N is the number of spins in the system and E; ;, is the

local disagreement function,

W

Ei,j == JISi,jSi+1,j - J2Si,jSi+2,j == JISi,j(Si+1,j + KSi+2,j)a
(5)

where «k=J,/J;>1. From now on we set J;=1, using a
simple expression for the disagreement function,

E;j=- Si,j(Si+1,j + KSi+2,j)a (6)

and we investigate our model in degenerated phase A, i.e.,
for |k|>1.

The global disagreement function can be calculated easily
for each possible steady state (see Fig. 2 and Table I). It has
been shown that in the TC model, the probability of the
concrete steady state does not depend on its global disagree-
ment function, but only on the number of equivalent configu-
rations connected with each type of the steady state (see
Table I). For example, there are only two configurations for
the ferromagnet—all spins up or all spins down, but four
different configurations for type (c) and eight configurations
for type (d).

In this paper, we introduce a new parameter 7 to the TC
model in the following way: we flip spin §; ; with probability

—AEi,j>
)

Pij= exp( (7)

This is the standard way of introducing temperature to the
system. However, since there is no energy defined for the TC
model, but only the disagreement function, we do not call T
temperature.

In the next section, we present Monte Carlo results for
k=2. We have performed simulations on the square lattice
LX L with periodic boundary conditions for several lattice
sizes (from L=20 to L=100). The averaging was done usu-
ally over 10* samples.

III. SIMULATION RESULTS

Let us first look at the time evolution of the magnetiza-
tion, defined as
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FIG. 3. A sample evolution of the magnetization for the system
on the square lattice 60X 60 with 7=1.9. Configurations of the
system at points denoted by circles are presented in Fig. 4. (MCS
stands for Monte Carlo steps.)

1
m(t) = EE S;(1). (®)
ij

We start from the antiferromagnetic state denoted by (b) in
Fig. 2. We expect that for 7> 0, the antiferromagnetic state
has the lowest stability, because its global disagreement
function has the largest value among states (a)—(d). In Fig. 3,
the time evolution of the magnetization for 7=0.19 and
L=60 is presented. It is seen that initially the system fluctu-
ates around state (b) but after some time it rapidly goes out
from this state to state (d). Again the system fluctuates for
some time in state (d) and then rapidly goes to state (c) and
so on. Once the system reaches the antiferromagnetic state, it
stays in this state forever. This is understandable since for the
ferromagnetic state [denoted by (a)] the global disagreement
function has the lowest value among states (a)—(d). States
(b)—(d) are now recognized as metastable states and only the
ferromagnetic state is stable. Let us recall that for 7=0 all
four states have been recognized as stable steady states [13].
In Fig. 4, we have presented snapshots for these moments
that are denoted by circles in Fig. 3. One can see the coex-
istence of several types of states.

The evolution presented in Fig. 3 is of course a sample
one. In this example, the first reached state (steady for T=0,
let us call it a trap), after escape from the initial antiferro-
magnetic state, was the one of type (d). However, it happens
that the first trap is different. What is the probability of
reaching a given type of state as the first one?

For T=0, the probabilities of reaching a certain steady
state from a random initial state are given in Table 1. The
total number of all possible steady states is 16 [2 of type (a)
+2 of type (b) +4 of type (c) +8 of type (d)]. For T=0, each
of these 16 states is equally probable. On the other hand, we
expect that above T the probability of state (a) is 1 and of all
others is zero. Thus, the probability of reaching a given
steady state, as the first in which the system is trapped for
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time = 0.625 x 10* MCS  time = 2.7 x 10* MCS

FIG. 4. The dynamical evolution of the system on the square
lattice 60 X 60 with 7=0.19 and the antifferomagnetic initial state.
The snapshots are taken at times denoted by circles in Fig. 3.

some time, should be 7-dependent. Moreover, the initial con-
figuration might also influence this probability. In Figs. 5 and
6, the probabilities of the first trap as a function of 7, for the
square lattice 80X 80, are presented. In Fig. 5, the initial
state is random, while in Fig. 6 the initial state is antiferro-
magnetic. If we look at Fig. 5, we see that for T— 0, prob-
ability values indeed agree with those in Table I. However,
above T", the ferromagnetic stable steady state is almost al-
ways reached as the first one. Simulations for antiferromag-
netic initial conditions show that for low values of 7, the
system remains antiferromagnetic. With increasing 7, re-
maining in the initial state becomes less probable and the
probability of reaching another state increases. For T>T",
the ferromagnetic state is almost always reached, analo-
gously with random initial conditions.
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FIG. 5. Probabilities of the first trap as a function of 7 for the
square lattice 80 X 80. Initial state is random. It is seen that above a
certain value of T=T", the system goes directly to the stable ferro-
magnetic state and states (b)—(d) become unstable.
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FIG. 6. Probabilities of the first trap as a function of T for the
square lattice 80X 80. Initial state is antiferromagnetic. It is seen
that above a certain value of T=T", the system goes directly to the
stable ferromagnetic state and states (b)—(d) become unstable.

To estimate the value of T, we have performed Monte
Carlo simulations for several lattice sizes and we have found
(see Fig. 7) that

T"=0.19 for L— o, 9)

Now we look at the distribution function of waiting times
to reach the first trap. For 0<7T< T", this distribution has an
exponential tail with a 7-dependent exponent (see Fig. 8).
For T=0, the distribution of waiting times also has an expo-
nential tail [16]. Mean saturation time is presented in the
inset. One can see that it grows for large 7. This is an antici-
pated behavior, because one can expect that for large 7, the
only stable steady state is the disordered one. This expecta-
tion is confirmed by the simulations (see Figs. 5 and 6) and
by the mean-field approach, which will be presented in the
next section.
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FIG. 7. Dependence between T and lattice size L.
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FIG. 8. Probabilities of reaching the trap (one of four presented
in Fig. 2) in time larger than 7 on the square lattice 80X 80 for
T=1.5 (O) and T=2.25 ( *). Mean saturation time {7 to reach the
trap is presented in the inset.

IV. MEAN-FIELD APPROACH

The magnetization m in the system of N spins can change
in time due to the following two events:

(i) If S=—1—S=1, then the magnetization increases by
2/N.

(i) If S=1—S=-1, then the magnetization decreases by
2/N.

If we denote by N, the number of up spins and by N_ the
number of down spins, then we can define the magnetization
as

(10)

We introduce the probabilities p,,p_ of finding an up-spin
and a down-spin, respectively,

N(1 + N 1+
+= ( m) +=_+= “ (11)
2 N 2
and
N(1 -m) N_ 1-m
N_= == 12
2 P-=NT 2 (12)

In one time step 7, three events are possible: the magne-
tization increases by 2/N, decreases by 2/N, or remains con-
stant,

2
*(m) = Prob +—=1,
S —

2
v (m)= Prob{m —m- X’} ,
Y°(m) = Prob{m — m}. (13)

In this paper, we have introduced parameter 7 to the TC
model in the following way: we flip spin §; ; with probability
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_AE,-J>’ (14)

Pij= exp( T

where

transition 11] — 7771 gives AE=-2(1 + k) <0,
transition 7] — 1/7 gives AE=2(1 - k) <0,
transition| 7| — |17 gives AE=2(k—-1) >0,

transition ||| — | |1 gives AE=2(1+ ) >0. (15)

Thus, if we assume that N— o0, using the mean-field ap-
proach [16—18] we get the hopping probabilities

+ 3 2(1 + k)
Y m)=pupp+p-pop+pZexp| = —
2 2(1 - k)
+pp, exp ,

_ 3 2(1 + k)

Y m)=pupp+ppp+p+—exp| - ———
2(1 - k)
+pfp_ exp( pe ) . (16)

It is easy to notice that

exp<2(1; K))=exp<;)exp<— 2(1; K)>. (17)

After simple algebraic transformations, we get

o) = 1-m? . (1-m)? exp(_ 2(1 + K)>
4 8 T
4
X {1 -m+(1 +m)exp(}>],
om) = 1-m? N (1+m)? exp(_ 2(1+ K)>
4 8 T

X {1+m+(1—m)exp(;>]. (18)

It is easy to see that for 7T— 0, both probabilities are equal,
Y (m) =y (m)=0,

1-m

2

¥ (m) + y'(m) = (19)

The evolution of the magnetization can therefore be viewed
as the motion of a random walker, as in the case of T=0 [16].
On the other hand, for T—o we get

Y (m) = y"(m) =m,

Y (m)+y"(m)=1. (20)

This means that for a large value of 7, the magnetization
fluctuates around zero [due to 7y (m)-y"(m)=m] and
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FIG. 9. Dependence between y (m)—y*(m) and T for several
values of m.

changes in each time step [due to y (m)+y"(m)=1].
The difference

2(1 +K)>@
T 2

2
X [l+m+%exp<;>] (21)

for finite 7> 0 is plotted in Fig. 9. It is seen that this differ-
ence grows rapidly above T=T =0.2. Below this value
v~ (m) = y*(m), which is the case of T— 0. We see that this
mean-field result agrees quite well with simulations for
which we have found 7°=~0.19.

Y (m) = y"(m) = eXP(-

V. SUMMARY

We have presented a generalized version of the two-
component model. It is generalized in the sense that it admits
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parameter (7) in the following way: we flip spin §;; with

probability
Dij=¢€xp T > (22)

where AE;; is the change of the disagreement function. In
this paper, we have investigated the TC model in the degen-
erated phase, i.e., for |«|> 1. Four different structures which
give the total number of 16 steady states have been observed
for T=0 [13]. It turns out that for 7>0, only two ferromag-
netic states (all spins up or all spins down) are stable steady
states. All other 14 states of type (b)—(d) are metastable.

The dynamics of the TC model for small 0<T7T<T" is
very interesting and consists of steady periods and rapid
changes (transitions between two different types of trap
states). For parameter 7> T, the system is going directly to
the ferromagnetic state.

In the constrained zero-temperature Glauber dynamics,
the only possible moves are flips of isolated spins,

=111 11l =1

Each move suppresses two consecutive unsatisfied bonds.
The system, therefore, eventually reaches a blocked configu-
ration, where there are no isolated spins, i.e., up and down
spins form clusters whose length is at least two. These
blocked configurations are the zero-temperature analogs of
metastable states. Thus the number of metastable states in the
Ising system under Glauber dynamics grows with the system
size and is infinite for the infinite system. In the TC model,
the number of metastable states is equal to 14 independently
of the system size. In this sense, the Ising system under
Glauber dynamics is much richer than the TC model. On the
other hand, all possible metastable states in the Glauber dy-
namics are of the same type—all contain ferromagnetic
stripes, while in the TC model with 7=0 there are four types
of steady states (a)—(d) presented in Fig. 2.
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